

An Intercomparison of AIRS, MODIS, and ASTER Land Surface Temperature and Emissivity (LST&E) Measurements

Glynn Hulley^a

Simon Hook^a, Bob Knuteson^b, Sung-Yung Lee^a

^a Jet Propulsion Laboratory, Caltech, Pasadena, CA

^b University of Wisconsin-Madison

AIRS Science Team Meeting, April 15-17, 2008, Caltech, Pasadena, CA

LST&E Intercomparison Goals

- International Workshop on the Retrieval and Use of Land Surface Temperature: Bridging the Gaps Asheville, NC, 7-9 April `08
- What are the natural spatial and temporal scales of the natural variability of the relevant quantities (LST&E)?
- To what degree can we identify BIASES in the LST&E products?
- When product algorithm changes are made (i.e. version changes), do we have a way of deciding if the intended improvements actually improve or degrade the product accuracy?
- More research and validation on low emissivities over barren areas
- Set of core validation LST&E sites over homogenous areas set standard to which remote sensing LST&E measurements compared
- A possible Unified LST&E product for Earth Science Research?

MODIS, AIRS, ASTER LST&E Climate Product Characteristics

Potential Sources of Bias and Mitigation Approaches

	Aqua MODIS	Aqua AIRS	Terra ASTER
Sensor Calibration	< 0.2 K (windows)	< 0.2 K	< 0.3 K
Atmospheric Attenuation	Column Retrieved	Profile Retrieved	Column Retrieved
Cloud Contamination	Cloud Detection	Cloud Clearing	Cloud Detection
Surface Type	Day/Night (004) Land Cover Class (005)	Multi-spectral	Calibration Curve
Temporal Sampling	Clear only; 1:30 AM, PM Twice daily	Partly Cloudy; 1:30 AM, PM Twice daily	Clear only 10:30 AM, PM every 16 days
Spatial Sampling and Resolution	1 km Clear Only (1 km -> 5 km)	45 km CC (15 km -> 45 km)	90 m Clear only
Scan angle	± 55°	± 45°	± 8.55°

ASTER Temperature Emissivity Separation (TES) Algorithm

1.0 Negetation

 ϵ_{min}

- > Inversion of T and ε are underdetermined
- ➤ In TES, additional constraint arises from minimum emissivity vs spectral contrast
- ➤ Observed maximum-minimum difference (MMD) used to obtain unknown emissivity value
- >Three error sources:
 - Reliance on empirical function
 - Atmospheric corrections (~1 K)
 - Radiometric calibration errors (small)
- > Reported accuracy:
 - T within 1.5 K and ε within 0.015 (1.5%)
- **Strength:** low emissivity, high spectral contrast
- Weakness: high emissivity, low spectral contrast

 $\varepsilon_{\text{min}} = 0.994 - 0.687 \text{*MMD}^{0.74}$

ASTER TIR Bands

Band 10	8.125 – 8.475 µm
Band 11	8.475 – 8.825 µm
Band 12	8.925 – 9.275 µm
Band 13	10.25 – 10.95 μm
Band 14	10.95 – 11.65 μm

ASTER Gridded L3 Emissivity Product

- Mean Summer (July, Aug, Sep) and Winter (Jan, Feb, Mar) emissivity from 2000-2008
- ASTER Land Surface Emissivity Aggregation Algorithm (ALSEA)
- Use New ASTER Cloud Mask (NACMA) to screen out cloudy pixels (MODIS/AVHHR/Landsat)
- Determine all intersecting granules on 1°x1° given grid
- Output mean and temporal SDev for all clear obs on each pixel
- 100 m spatial resolution
- States completed:
 - California, Nevada, Arizona, Utah, New Mexico, Oklahoma, Texas
- Complete USA by end of year??

^{**} Hulley, G., S. J. Hook, 2008, The ASTER Land Surface Emissivity Database of California and Nevada, *Geophys. Res. Lett.*, in review.

2x2 ASTER pixels (100 m) averaged over each sample

Redwood National Park - Conifer Forest **ASTER Validation Sites** - Vegetation and Water 42.5° N Lake Tahoe - Water 40.0° N 37.5° N 35.0°N Stevens Creek Oak Forest - Deciduous 32.5° N 112.5° W 125.0° W 115.0° W 122.5 W 117.5° W 120.0° W

Sampling data with different spatial resolutions

Current:

$$-\frac{1}{e} = \frac{1}{n} \sum_{k=1}^{n} e_k$$

Proposed:

$$-\frac{1}{e} = \begin{bmatrix} \frac{1}{n} \sum_{k=1}^{n} e_k B(T_k) \\ \frac{1}{n} \sum_{k=1}^{n} e_k B(T_k) \end{bmatrix}$$
 Pixel (

ASTER
Pixel (100m)

** But ASTER product is mean, seasonal T and e Work in progress.....

ASTER minus AIRS (v5) Mean Summer Emissivity Differences

- ** 80% of pixels have less than 1.5% emissivity difference (~1 K)
- ** Low emissivity areas have differences up to 7% (6.5 K)

But could be due to AIRS overestimating nighttime emissivities over barren areas

ASTER and AIRS Emissivity Comparisons for all 5 TIR bands

ASTER minus MODIS (MYD11C3 V4) Mean Summer Emissivity Difference

- ** 80% of pixels have less than 1% emissivity difference (~0.8 K)
- ** Low emissivity areas have differences up to 6% (~5.6 K)

ASTER minus MODIS (MYD11C3 V5) Mean Summer Emissivity Difference

- MODIS (v5) uses Day/Night combined with Split-Window Land Cover type
- Up to 10% emissivity difference in arid/semi-arid areas!! (~9 K)

ASTER and MODIS (v4) Emissivity Comparisons for all 5 TIR bands

ASTER and MODIS (v5) Emissivity Comparisons for all 5 TIR bands

MODIS (v5) and MODIS (v4) Emissivity Difference at 8.3 µm

MODIS IGBP Land Cover Product

MODIS (MYD11C3 V5) minus AIRS Mean Summer Emissivity Comparisons

Low-Emissivity (Quartz)

All pixels with ASTER ϵ at 8.3 μ m <0.85 10 pixels

Mid-Emissivity (Mixed)

All pixels with 0.85 < ASTER ϵ at 8.3 μ m < 0.95 240 pixels

High-Emissivity (Vegetation/Water)

All pixels with ASTER ϵ at 8.3 μ m > 0.95 259 pixels

MODIS – AIRS NIGHT

Barren land shows MODIS cold bias (collection 005) up to 8 degrees.

* Knuteson

MODIS – AIRS DAY

Barren land shows MODIS cold bias (collection 005) up to 10 degrees.

* Knuteson

Use Land Classes (IGBP) to group the global data by land type for statistical analysis.

IGBP CLASS ID	IGBP CLASS Description
0	Water Bodies
-	
1	Evergreen Needleleaf Forest
2	Evergreen Broadleaf Forest
3	Deciduous Needleleaf Forest
4	Deciduous Broadleaf Forest
5	Mixed Forest
6	Closed Shrublands
7	Open Shrublands
8	Woody Savannas
9	Savannas
10	Grasslands
11	Permanent Wetlands
12	Croplands
13	Urban and Built-Up
14	Cropland/Natural Vegetation Mosaic
15	Snow and Ice
16	Barren or Sparsely Vegetated
17	Missing Data

MODIS 004 MODIS NIGHT Collection 004 minus AIRS(v5) NIGHT **NIGHT** 0.5 0 MODIS - AIRS LST Difference (K) -0.5 -1.5 AIRS and MODIS (collection 004) agree to within 0.5 K at night !!! -3.5

9

IGBP Land Class

8

10

12

14

16

* Knuteson

6

MODIS 004 MODIS DAY Collection 004 minus AIRS(v5) DAY DAY 0.5 0 MODIS - AIRS LST Difference (K) -0.5 -1.5 AIRS and MODIS (collection 004) agree to between 0 and -1.5 K in the Day. -3

9

IGBP Land Class

8

10

12

14

16

* Knuteson

6

-3.5

MODIS 005 MODIS NIGHT Collection 005 minus AIRS(v5) NIGHT **NIGHT** 0.5 0 MODIS - AIRS LST Difference (K) -0.5 -1.5 -3 MODIS (collection 005) is 0.5 – 2.5 K colder than collection 004? -3.5 6 7 8 9 10 12 14 16 **IGBP Land Class** * Knuteson

MODIS 005 MODIS DAY Collection 005 minus AIRS(v5) DAY DAY 0.5 0 MODIS - AIRS LST Difference (K) -0.5 -1.5 -2 MODIS (collection 005) is 0.5 – 3 K colder -3.5 than collection 004? 6 8 9 10 12 14 16 **IGBP Land Class** * Knuteson

Summary and Future Work

- ASTER validation results
 - <0.5 % rocks/sand, 1-3% over vegetation/water</p>
- AIRS (v5) and ASTER emissivity differences
 - <1.5% over vegetated and mixed areas</p>
 - Up to 7% over desert areas.
- Up to 10% differences between MODIS v4 and v5 over barren areas
- Complete L3 ASTER emissivity dataset for North America
- Address sampling problem
- Compare diurnal and seasonal emissivity differences
- Make comparisons with Joel's new surface retrieval results (v6?)
- Use ASTER emissivity for AIRS first guess instead of Land Cover Classification a priori?

Low-Emissivity (Quartz)

All pixels with ASTER emissivity at 8.3 μm <0.85

Wavelength	8.3 µm	8.6 µm	9.1 µm	10.6 μm	11.3 µm
Mean Bias					
ASTER – AIRS (50 km)	-0.071	-0.067	-0.071	-0.015	-0.021
ASTER – MODIS (5 km)	-0.079	-0.056	-0.076	-0.009	-0.024
MODIS – AIRS (50 km)	0.005	-0.011	0.001	-0.007	0.003
Std Dev					
ASTER – AIRS (50 km)	0.028	0.028	0.033	0.009	0.012
ASTER – MODIS (5 km)	0.016	0.015	0.016	0.008	0.005
MODIS – AIRS (50 km)	0.022	0.024	0.023	0.011	0.016

Mid-Emissivity (Mixed)

All pixels with 0.85 < ASTER emissivity at $8.3 \ \mu m < 0.95$

Wavelength	8.3 µm	8.6 µm	9.1 µm	10.6 µm	11.3 µm
Mean Bias					
ASTER – AIRS (50 km)	-0.017	-0.023	-0.027	-0.002	-0.006
ASTER – MODIS (5 km)	-0.038	-0.038	-0.050	-0.011	-0.021
MODIS – AIRS (50 km)	0.018	0.013	0.022	0.009	0.015
Std Dev					
ASTER – AIRS (50 km)	0.022	0.019	0.020	0.009	0.011
ASTER – MODIS (5 km)	0.018	0.015	0.016	0.005	0.005
MODIS – AIRS (50 km)	0.018	0.017	0.018	0.010	0.010

High-Emissivity (Vegetation/Crops)

All pixels with ASTER emissivity at 8.3 μ m > 0.95

Wavelength	8.3 µm	8.6 µm	9.1 µm	10.6 µm	11.3 µm
Mean Bias					
ASTER – AIRS (50 km)	-0.003	-0.008	-0.014	-0.001	-0.002
ASTER – MODIS (5 km)	-0.008	-0.013	-0.022	-0.010	-0.017
MODIS – AIRS (50 km)	0.006	0.007	0.010	0.010	0.015
Std Dev					
ASTER – AIRS (50 km)	0.012	0.011	0.012	0.008	0.009
ASTER – MODIS (5 km)	0.010	0.010	0.012	0.004	0.004
MODIS – AIRS (50 km)	0.017	0.016	0.018	0.009	0.009

ASTER Summer minus Winter mean emissivity

ASTER L3 Emissivity Validation

- High spatial resolution (100m) makes validation possible
- Homogenous areas with known composition needed
- Samples measured in lab using FTIR
- Reflectance converted to emissivity and convolved to ASTER bands
- Geologic Samples
 - Quartz-rich Algodones dunes, southeastern CA
 - Carbonate-rich fan deposit, Cuprite NV
 - Stovepipe Wells dunes, Death Valley, CA
- 10 samples taken in 500x500m grid
- 2x2 ASTER pixels (1 pixel = 180 m)

Outline

- ASTER overview
- New ASTER L3 Emissivity Product
- ASTER Emissivity Validation results
- AIRS and ASTER Emissivity Comparisons
- MODIS and ASTER Emissivity Comparisons
- AIRS and MODIS Global LST Comparisons
- AIRS and MODIS Global Emissivity Comparisons
- Summary and Future Work

- > MODBF Seemann Baseline Fit LSE Database
- Characterized by model with inflection points at 8.3, 9.3, 10.8 and 12.1 µm in TIR
- ➤ MOD11 MODIS LSE Product
- Day-night emissivity retrieval with values at 8.6, 11 and 12 μm in TIR
- ightharpoonup MOD11 values at 8.6 um are assigned to inflection points at 8.3 and 9.3 μm , while MOD11 emissivity values at 11 and 12 μm are used to extend line from hinge points 10.8 and 12.1 μm .
- ➤ MODBF can be linearly interpolated between inflection points for comparisons with other instruments, eg. ASTER

Algodones Dunes - MODIS v4 and v5 Differences

New ASTER Cloud Mask Algorithm (NACMA)

